전화 및 상담예약 : 1588-7655

Free board 자유게시판

예약/상담 > 자유게시판

How To begin A Business With Only Deepseek Ai

페이지 정보

Suzanna 작성일25-02-04 09:17

본문

DeepSeekMoE는 각 전문가를 더 작고, 더 집중된 기능을 하는 부분들로 세분화합니다. 이렇게 하는 과정에서, 모든 시점의 은닉 상태들과 그것들의 계산값을 ‘KV 캐시 (Key-Value Cache)’라는 이름으로 저장하게 되는데, 이게 아주 메모리가 많이 필요하고 느린 작업이예요. DeepSeek-V2에서 도입한 MLA라는 구조는 이 어텐션 메커니즘을 변형해서 KV 캐시를 아주 작게 압축할 수 있게 한 거고, 그 결과 모델이 정확성을 유지하면서도 정보를 훨씬 빠르게, 더 적은 메모리를 가지고 처리할 수 있게 되는 거죠. 이게 무슨 모델인지 아주 간단히 이야기한다면, 우선 ‘Lean’이라는 ‘ 기능적 (Functional) 프로그래밍 언어’이자 ‘증명 보조기 (Theorem Prover)’가 있습니다. DeepSeek-Coder-V2는 총 338개의 프로그래밍 언어를 지원합니다. DeepSeek-Coder-V2는 이전 버전 모델에 비교해서 6조 개의 토큰을 추가해서 트레이닝 데이터를 대폭 확충, 총 10조 2천억 개의 토큰으로 학습했습니다. 소스 코드 60%, 수학 코퍼스 (말뭉치) 10%, 자연어 30%의 비중으로 학습했는데, 약 1조 2천억 개의 코드 토큰은 깃허브와 CommonCrawl로부터 수집했다고 합니다. 다만, DeepSeek-Coder-V2 모델이 Latency라든가 Speed 관점에서는 다른 모델 대비 열위로 나타나고 있어서, 해당하는 유즈케이스의 특성을 고려해서 그에 부합하는 모델을 골라야 합니다. 마이크로소프트 리서치에서 개발한 것인데, 주로 수학 이론을 형식화하는데 많이 쓰인다고 합니다. 위에서 ‘DeepSeek-Coder-V2가 코딩과 수학 분야에서 GPT4-Turbo를 능가한 최초의 오픈소스 모델’이라고 말씀드렸는데요.


2.png 을 조합해서 개선함으로써 수학 관련 벤치마크에서의 성능을 상당히 개선했습니다 - 고등학교 수준의 miniF2F 테스트에서 63.5%, 학부 수준의 ProofNet 테스트에서 25.3%의 합격률을 나타내고 있습니다. 기존의 MoE 아키텍처는 게이팅 메커니즘 (Sparse Gating)을 사용해서 각각의 입력에 가장 관련성이 높은 전문가 모델을 선택하는 방식으로 여러 전문가 모델 간에 작업을 분할합니다. 트랜스포머에서는 ‘어텐션 메커니즘’을 사용해서 모델이 입력 텍스트에서 가장 ‘유의미한’ - 관련성이 높은 - 부분에 집중할 수 있게 하죠. 따라서 각각의 전문가가 자기만의 고유하고 전문화된 영역에 집중할 수 있습니다. 하지만 각 전문가가 ‘고유한 자신만의 영역’에 효과적으로 집중할 수 있도록 하는데는 난점이 있다는 문제 역시 있습니다. 이렇게 하면, 모델이 데이터의 다양한 측면을 좀 더 효과적으로 처리할 수 있어서, 대규모 작업의 효율성, 확장성이 개선되죠. 이렇게 하면 불필요한 계산에 자원을 낭비하지 않으니 효율이 높아지죠. 자, 이렇게 창업한지 겨우 반년 남짓한 기간동

댓글목록

등록된 댓글이 없습니다.


Warning: Unknown: write failed: Disk quota exceeded (122) in Unknown on line 0

Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/home2/hosting_users/cseeing/www/data/session) in Unknown on line 0